New iterative methods for dense linear systems

نویسندگان

چکیده

Solving dense linear systems of equations is quite time consuming and requires an efficient parallel implementation on powerful supercomputers. Du, Zheng Wang presented some new iterative methods for [Journal Applied Analysis Computation, 2011, 1(3): 351-360]. This paper shows that their are suitable solving system equations, compared with the classical Jacobi Gauss-Seidel methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the modified iterative methods for $M$-matrix linear systems

This paper deals with scrutinizing the convergence properties of iterative methods to solve linear system of equations. Recently, several types of the preconditioners have been applied for ameliorating the rate of convergence of the Accelerated Overrelaxation (AOR) method. In this paper, we study the applicability of a general class of the preconditioned iterative methods under certain conditio...

متن کامل

Sparse Preconditioned Iterative Methods for Dense Linear Systems

Two sparse preconditioned iterative methods are presented to solve dense linear systems arising in the solution of two dimensional boundary integral equations. In the rst method, the sparse preconditioner is constructedsimply by choosing a small block of elements in the coeecient matrix of a dense linear system. The two-grid method falls into this category when the dense linear system arises fr...

متن کامل

Parallel iterative methods for dense linear systems in inductance extraction

Accurate estimation of the inductive coupling between interconnect segments of a VLSI circuit is critical to the design of high-end microprocessors. This paper presents a class of parallel iterative methods for solving the linear systems of equations that arise in the inductance extraction process. The coefficient matrices are made up of dense and sparse submatrices where the dense structure is...

متن کامل

Iterative Methods for Linear Systems

This chapter contains an overview of some of the important techniques used to solve linear systems of equations Ax = b (1) by iterative methods. We consider methods based on two general ideas, splittings of the coeecient matrix, leading to stationary iterative methods, and Krylov subspace methods. These two ideas can also be combined to produce preconditioned iterative methods. In addition, we ...

متن کامل

Iterative Methods for Linear Systems

In many applications we have to solve a linear system Ax = b with A ∈ Rn×n and b ∈ Rn given. If n is large the solution of the linear system takes a lot of operations, and standard Gaussian elimination may take too long. But in many cases most entries of the matrix A are zero and A is a so-called sparse matrix. This means each equation only couples very few of the n unknowns x1, . . . , xn. A t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: E3S web of conferences

سال: 2021

ISSN: ['2555-0403', '2267-1242']

DOI: https://doi.org/10.1051/e3sconf/202129302013